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1 Redfield theory

(1) System model.

In condensed phase dynamics, one is typically interested in the detailed behavior of only

a small part of the overall system and so one partitions the total system into the sub-system
of interest and a bath (reservior, environment), with the Hamiltonian

Hyop = Hs + Hp + Hsp = Ho + Hgp (1)

Here, Hg is the Hamiltonian of the isolated sub-system (henceforth called simply the system);

Hpg is the Hamiltonian of bath; and the two parts are combined as Hy = Hg + Hg. Hgp

describes their interaction. The system-bath interaction can always, in principle, be written

as a sum of products of separate system and bath operators, i.e,

Hsp = S, By (2)
where the S, and B,, act only on functions of the system and bath variables, respectively.

(2) Second order expanding.
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The density matrix of total system is p;.(t). Its time evolution equation is the Liouville-
von Neumann equation
d 1

aptot (t) = i [Ha Ptot (t)] (3>

All the information of the total system is contained in the equation. But we can not directly

solve it, since the Hamiltonian of total system is infinity.

Go to the interaction picture (symbol ‘~’). Then Liouvill-von Neumann equation (Eq.3)

becomes p ‘
- = -
%ptot(t) = _ﬁ[HSB(t)a ptot(t)] (4)
where
ﬁtot(t) = U_l(t)ptot(t)U(t) = 6%H()tptot(t)e_%HOt (5)
ﬁSB(t) _ B%HOtHSBe—%HOt _ e%(HS+HB)tHSB€—%(HS+HB)t
=Y eiflstg, e Istei Mot g e~ ot = NS (1) B, (1) (6)
S,(t) = enflstg, e nHst (7)
B, (t) = en's! B, e~ Hnt (8)
Integrate both side of Eq.4 with arbitray start time .
t ~ Z t ~ ~
|| ) == | drifisa(r), () 9)
to h to
.ot
- - 1 ~ -
Pun®) = ra(ts) = 5. | dr{Flsn(r), () (10)
to
Insert the Eq.10 back to the right side of Eq.4. Then we get
d . i [~ 3 U 5
G®) = = [ Hsn(0), patto) | drlfsa(r), (7)) (1)
dt h h ),
d 1.~ ~ 1 - - B
%ptot(t) = _ﬁ[HSB(t>7ptot(t0)] — dr[Hsp(t), [Hsp(T), pro(T)]] (12)
to

Currently, we have not do any approximation. The equation is exact.
(3) Trace the bath.

Trace over the bath, we will get the reduced system density matrix pg(t),
Trp[pror(t)] = Trp [G%Hotptot(t)ei%Hot} = eéHStTl"B [e%HBtPtot@)ei%HBt] et
= eills! Ty, [eféHBte%HBtPtot(t)] e i Mlst
— S Tr g [y ()] €311
— Q%Hstps(t)e—%Hst

s(t) (13)

I
™

Then we get
1

%ﬁs(t) _ —%TrB {[Hsn(0) punlt0)]} ~ 7 E e {[Hsp(0). [Hsp(r).prn(r)]|} (1)
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(4.1) Initial state assumption.(Ref.[3])

Assume that at time ¢y = 0 the pigment system and bath are in a separable state
prot(0) = ps(0) @ p5(0) (15)
this can always be obtained by choosing ¢, = 0 appropriately. Then the second term in the
RHS of Eq.12 becomes
Teg { [Asn(t), e (0)] } = D [Su(®), 55 (0)] Trn [ Ba(t)p(0)] (16)

n

that is, we consider the expectation value of the operators B,. In general we will also
need to take an ensemble average over the random fluctuating field (B,(t)), as we look
at expectation values for the density operator. We can now make the assumption that
(B,)p =0, , which implies Trp [ﬁgg(t)pB(O)} = 0. This is not restrictive, since, if Hgp is of
the form Hgp = S ® B with (B) # 0 we can replace Hgp with Hgg = S ® (B — (B)p), and
simultaneously add S(B)p to Hg. With this condition, (Hsp)p = 0 and since pg(0) has the
same form in both Schrédinger and interaction pictures, the result holds in the interaction
picture also. The same argument can be made if Hgp = ), S, ® B,,. Then the second term

in the Eq.12 vanishes and we have
@ oet) = —~ “arep | [Bap (). [Hs5(r), pro(r)] (17)
ai 72 |,

This equation can not be sovled, we need make some approximations.
(4.2) Born approximation.(Ref.[3])

Assume that the coupling between the system and the bath is weak and the bath is always

in a thermal equilibrium.

pror(t) = ps(t) @ pp(0) (18)
e—BHB
psl0) = (19

wherefS = 1/KgT, [pp(0), Hg] = 0 which is a stationary state. pp(0) has the same form in

both the interaction picture and Schrodinger picture.
(4.3) Markov approximation.(Ref.[3])

We will also assume that we are working over timescales that are shorter than the gross

timescale over which the system evolves, so that

ps(T) = ps(t) (20)
Then Eq.17 becomes
%ps@ - L arTrp { | Hsp(t), [Hsn(r), ps(1) @ pn(0)]] } (21)

(5) Change the integration variable.

Set 7/ =t — 7, then 7 =t — 7. We have

Jt ar= | () = - JO ar' = J ar’ (22)

0 t t 0
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Then
750 = =3 | 4T {[Asn), [Asnlt = 7). 550 0 50)]] ) (23)
Rewrite 7’ to 7, we have
Es(t) = = L arTep { | Ass(t), [Hsn(t —7),65() © 5(0)] |} (24)
(6) Expanding the equation.
Cs(t) = =5 J arTey { [ Hsp(t), [Hsn(t — 7)ps(t) @ fin(0) — ps(t) @ pn(0) Hsn(t — )] }

- J; drTry { Hsp (1) Hs(t — 7)ps(t) @ s 0)
— Hgp(t — 7)ps(t) @ pp(0)Hp(t)
— Hgp(t)ps(t) © pp(0)Hp(t — 7)
+ps(t) ® pp(0)Hgp(t — T)gSB(t)} (25)

where

Trp |Hsa(t) Hsp(t = T)ps(t) © u(0)] = D Trn | Su())Bu(®)S0(t = 7)Bult = Dis()(0)|

here

is the bath correlation function. Rewrite it as
(Bu®)Bult = 7)) =t [ Bu(t)Bat = 7)ps(0)
= trp -e%HBth(())6_%HBte%HB(t_T)Bn(O)e_%HB(t_T) : pB(O)]

= trp _e_%HB(t_T)e%HBth(O)e_%HBte%HB(t_T)Bn(O) : pB(O)]

— trp [F 07 By ()¢ H997 B, (0) - pis(0)|
= (Bu()B.(0))
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— trp [Bm(o)e—%HBtG%HB(t—T)Bn(0)6 hHB(t T)ehHBt . pB(O)]

= (Bu(0)Ba(-1)) (29)
After the correlation time 7, the correlation function becomes 0. So we can therefore extend

the limit of integration to +o0o. Then

@ ps(t) = =5 J ar S {{Ba(r)BA0)) Su()30t —)ps(1)

dt
~(Bu()Bu(0)) Sult = T)7s(t)Sn(?)
~(Bal0)Bu(7)) Sn(®)ps(8)S0(t — 7)
+(Ba0)Bul)) Fs()Sn(t = T)Sm(®)} (30)
(7) Back to Schrodinger picture.
ps(t) = eislpg(t)eiflst = (31)
d i LHgt —iHgt ipgg | @ —iHgt LHgt i —iHgt
Epg(t):ﬁHseﬁ Stpg(t)e  nst 4 ent's [%pg(t)] e nst —eh Spg(t)ﬁng nis
= b | palt)| HI < ek (o) g i (32)
Put above equatlons into Eq.30, we have
P50~ 3 o). ) = hlj dT;K (T Bu(0)) RS, (0)5, (1 = 7)ps(1)eh
< m n >B€ HStS )ﬁS(t)gm(t)e%HSt
~(Bal0) Bl >Be”Hsts Ps(t)Sa(t — T)er st
+< 2 (0) By (T >Be (t—T)gm(t)e%Hst}
(33)
Since
e RIS, ()5, (t — 7)) !
:eth €ﬁHstS ( ) 7%H5tehH5(t T)S (0)6 hHs(t ‘r)ehHgtpS(t)eth @hHst
=S (0)e =TS, (0)e™ #7151
:Sm(())Sn(_T)PS( ) (34)
we get ‘

G050 = 5 los(0). He) = =5 | " S {(Bulr)Bul0)) 5, (0)5,(=s(t)
~(Bun(7)Bal0)) Su(=7)p5(1)5(0)
~(Bu0)Bun(7)) Su0)ps(t)S(~7)
+(Bu0)Ba(r)) ps()Su(~T)Sn(0)}  (35)

(8) Switch to the eigenstate representation of Hg.
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There are two possibilities to represent the reduced density operator pg(t). First, one
can choose a site representation in terms of the {|n)} basis, which gives the reduced density
matrix p§(t),, = (m|ps(t)|n). On the other hand, the alternative to the site representation
is provided by an eigenstate representation of the excitons {|v)}. This gives a reduced density
matrix such as pg*(t),, = (ulps(t)|v). In order to obtain exciton energies {e,} and states
{|]v)}, the system Hamiltonian is diagonalized by orthogonal matrix U via

U 'HgU = (36)

where the vth diagonal element of 2 is identical to the vth eigenenergy €, . An exciton ket

) = (U unln) = Z o) (37)

n

Hence, the two representations of the reduced density operator are transformed to each other

state can be expanded as

as follows
U~ psiter) — peee (38)
Set
= (6= €)1 (39)
we have
<M\ps(t)| ) =P (1) (40)

——WPS Hsl|v) = [ plHsps(t)lv) — (ulps(t)Hs|v)]

;[eypgx%t)u — P (]
Zwuvpesm( D (41)
(1S (0)Su(=T)ps(t) ) = Z<ms ) il RTS8, RS (4 s (1))

o Z H n fi,u’e Zwﬁ#’TpEIC@f)
= Z Oury Z )i (S )€™ M”“/Tpexc(t)u’w (42)

Ly

(11Sn(=T)ps () Sm(O)]1) = D (ple™ 175 S 7 |1) (4 o5 (8) V) (V| S )
= Z(Sn)w’(sm)u’ue W“”/Tpexc( )M’V’ (43)
(1l Sm(0)ps(O)Sn (=) V) = D~ (ISl (' lps (D)) (V'€ 7573 e 757 |v)

= > (S (S pF(E) (44)
w v

(1lps()Su(=7)Sm(0)|v) = >~ (plps(B)V/) (|77 S, e 57 |1) (1| i)

v Kk

= Z(SH)V’H(Sm)/we e N;Olexc(t)w/

/

vk
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= Z(SM/M Z(Sn)u’n(sm)fwe “ era:c( )M’V' <45)

For convenience, we will remove the subscrlpt S of p&e(t) and put Eq.40~ Eq.45 in Eq.35.
Then, we have

d exc exc > >, 5, —iw,. 1T
) + i = =Y [ wzhg ), Ar( B(r) Bal0)) €757 (S) e (S
1%
1 > 5, 5, —iw,, 1T
E 2 | A (BaBA) e (S S
1 [>° - - B
iz | ar(BaBalr)) e (S A S
m.n 90 B
K m,n < >B
(46)
(9) General form of Redfiled equation.
Set
L = =5 [ ar(BumB0) ™ (S)nlSh) (47)
vivp! h2 . T m\T )Dnp B€ m)v'v\(On)up
L0 = 2 30 [ ar(Bu@)Ba(r)) e (S,)(S0) (48)
vivup' T h2 0 T n m\T Be n)v'v\Pm ) uu’
RH”M'V' FI(/+1/)yu’ + Fll vup! 51’ v Z F,unn,u - 5# K Z FV KKV (49)
we have
d exrc exc exrc
dpw/ (t) ZwﬂVpuy + Z R/U/Hl’/pu’u’ (t) (50)
/J/l//
This is the mose general form of Readfield equation.
(10) More compact form.
Considering
F(*)* _iz Ood <B (O)B ( )>* zwu/y‘r(s )* (S >*
Vivpp K2 0 T\ Pn m\T Be viv\m !
1 > » » W, 1T
= 2 | I (Ba(MBA) TS5
_ )
- Mll’”/l// (51)
where

then, we get
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So the Redfield equation can written as

d

0 (8) =~ (1) + D Ry (1) (54)
,U«/V/
where
R = Torvpe + Thppr = 60 > Tyt = 6 D D (55)
1 OO >, >, W, 1, 0T
Dy = 755 J A Ba(r) B0)) ¢ (Sl S (56)
0

Should be noticed that the subscripts in Eq.55 and Eq.56 are independent. Don’t get con-
fused.

2 Bath correaltion functions and spectral density

Introducing a spectral distribution function of the electron-phonon coupling constants,

Jmn(w), one can express the correlation function as(Ref.[1])

. . B[ ,
Com(t) = (Bu(7)Ba(0)) =~ J dw Ty (@) [n35(w) + 1)e™™ (57)
™ —0o0
where .
TLBE(CU) = 665‘*’——1 (58>
is the Bose-Einstein distribution function' and we postulated the antisymmetry,
Jonn(=) = = Jum @) (62)
The absolute magnitude of the spectral distribution function is related to the reorganization
energy by
< T (w
A, = J PR (63)
0 W
Bath correlation function (Eq.57) can be simplified. Considering
1 1 hw .
] +1= 3 [coth <BT) + 1} e ™" = coswt — isinwt (64)
! There are many forms, such as
1 eP — 141 1
1 — e~ Bhw - ePhw _ ] = ebhw _ 1 +1 (59)
BhwY 2 2 2e~Phw
COth(2)_1+eﬁh‘*’—1_1_1—ef’h“’_1+1—e—5h‘“ (60)
Laurent expansion expression
1 11 2 - W
v A TR S (61)

27k

G 1s Matsubara frequency.

here v, =
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The real part of the bath correlation function becomes

ReCn(t)

ZQE dw J (W) {coth <5hw> + 1} cos wt
™

J—00

e r0
:E demn(w) coth < > coswt + QE dw Jpmn (W) |:C0th <@) + 1} cos wi

27 J, m

J—00

ho[® h o[~
= demn(w) coth <6 ) coswt — — dw Jpn(w) [coth < ) } cos wt
o J, 2 2

™ Jo

:E dw Jpn (W) coth </62 > + 1| coswt — n dw Iy (W) [— coth < 5 ) + 1} cos wt

2m Jo 21 Jo

:E JOO dw Jpn(w) coth (BTM) cos wt (65)

™ Jo

The image part of the bath correlation function becomes

ImC,,, (1)
h [~ hw
=~ 5 N dw Jpn (W) {coth (%) + 1] sinwt
h [ [ huw | ho(°
=——| dwdy,(w) |coth (B—) + 1| sinwt — — dw I (W) [coth ( ) } sin wt
27 Jo L 2 1 2m J—0
h [~ [ huw | h [~
=——| dwdm,(w) |coth 5— + 1| sinwt + — dw Jpmn(w) |coth sin wt
2 Jo i 2 | 21 Jo
h [~ [ huw | h [~
=— o o dw I (W) _coth (52 ) + 1_ sin wt — o dw (W) [— coth ( 2w) + 1} sin wt
h oo
=— —J dw I (w) sinwt (66)
m™Jo
Then, we get
Crn(t) = <£~3m(7)£~3n(0)> = EJ dw J (W) |:C0th (ﬂ_hw) coswt — isin wt} (67)
B T Jp 2
The Fourier transform of the bath correlation function is
Connles] = J Qe Con (1) (68)
0
whose real and imaginary parts are expressed as
ReCyn|w] = Adpn (W) [npe(w) + 1] (69)
1 mn
ImC,pw] = —PJ dw ’M (70)
T Joo w—uw

respectively. The symbol “P” denotes the principal value of the integral.?

Then the Eq.56 can be expressed as
1
I‘abcd = ﬁ Z Cmn [wdc](sm)ab(sn>cd (71)

2refer to the Kramers-Kronig relations (k — k relations)
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3 The photosythetic light-harvesting system

We employ the following Frenkel exciton Hamiltonian to study excitation energy transfer
(EET) dynamics of photosythetic light-harvesting system,
Htot = Hel + th + Hreorg + Hel—ph (72)

where

Ha = 3" ) nled + 3 Tunlm) (0] + ) () (73)

m<n
N
Hy =Y HI,  HY' = hwe(pi +2)/2 (74)
n=1 13
N
Hycorg = Y _[n)(n|An, A=) huwedr/2 (75)
n=1 £

N N
Hel—ph == Z Hzl—ph == Z San Sn == |n> <n|, Bn = — Z hu)gdngq§ (76)
n=1 n=1 3

In the above

o |n) represents the state where only the nth site is in its excited electronic state |@p.)

and all others are in their ground electronic states |¢,,,) that is

n) = [@ne) [] lme) (77)

n#m

« €% is the excited electronic energy of the nth site in the absence of phonons.

e Jun is the electronic coupling Hamiltonian between the nth and mth sites, which is

responsible for EET between the individual sites.

« HP" is the phonon Hamiltonian associated with the nth sites, where g, pe, and we are
the dimensionless coordinate, conjugate momentum, and frequency of the £&th phonon

mode, respectively.

» )\, is the reorganization energy of the nth site, where d,¢ is the dimensionless displace-
ment of the equilibrium configuration of the £&th phonon mode between the ground and

excited electronic is the coupling states of the nth site.

o HE~PM is the coupling Hamiltonian between the nth site and phonon modes.

For simplicity, we assume that the phonon modes associated with one site are uncorrelated
with those of another site.

Crn = OmnCr(t), Ton = OmnJn (W) (78)

Moreover, we assume that the phonon spectral distribution functions for each pigment are

equivalent. Then, we have
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and we employ the Drude—Lorentz density (the overdamped Brownian oscillator model)

J(w) =2\ 80
(@) =22 (50)
Considering Eq.76 and Eq.37
Sn = [n)(n|
v) = Z Donln) = Z 1)
we have
(Sn)as = (aln)(n|b) = (nfa)*(n|b) = UnaUy, (81)
(Sn)cd = UncU:d (82)
Then the more specific Redfield equation will be
d exrc e:vc xc
dtpz] (t) Zwljpz] + Z R’Ukllokl (83)
Rijri = Ui + Uiy — 05 Z Limmk — Oik Z L i (84)
1 N
I‘abcal = ﬁc[wdc] Z UnaUZbUncU;d (85)

where
Clu] = J dte O (#)

hew
dwJ(w) {COth (%) coswt — i sin wt]
0

the real and imaginary parts of C[w] are expressed as
ReClw] = hJ(w)[npe(w) + 1]

ImClw] = lPJ dw ReClw]

™ w—w

O(t):—J

respectively. From the Eq.83, we can know that

« Coherences (superpositions between states) p;;(t) oscillating at w;; and dephasing with

a rate R;j;.

o Excitonic populations p; which do not oscillate but are subject to population transfer

with rates R”]J(Z < ])

e The other terms include transfer between coherences and populations, R;;x, and can
often be neglected if the chosen basis indeed is the preferred one (so-called secular

approximation).

Sepecially, for the exciton population transfer reate R;;;;(i # j,4 < j), we have
Riijj = F]”] + r = QRGF]'Z'Z']' (86)

Jitj
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If the system Hamiltonian is fixed

N
1 %
sz’z’j = ﬁc[wji]z UnjUniUniUnj (87)

then the underline term is also fiexd. So
Riijj o ReClwy] = hJ(wji)[npp(w)i) + 1] (88)
which means the positive part of w axis of ReC|wj;] is in proportion to the downhill rate,

negative part is in proportion to the uphill rate. The ratio of downhill and uphill rate

constants between the populations of sates |i) and |j) is always (Ref.[2 ])

Ratiodownbill _ Riy;  hJ(wii)lnes(ws) +1] Bhwﬂ - +1
uphill Rjjii hJ(—wji)[nBE(—wji) +1] —ﬂTﬂl 1
- @hwﬁ 1 + ]- Bhwﬂ 1 + 1 Bhwﬂ ; —+ 1
= — SPhwj; = Bhas,; s = — -
. o
1
= Bhwji;
N (WH) (e 1)
hw i,
== (89)
. uphill s heji
Ratio—— = Wiji — o KpgT 90
MO Gownhill — =e (90)
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