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1 Redfield theory

(1) System model.

In condensed phase dynamics, one is typically interested in the detailed behavior of only
a small part of the overall system and so one partitions the total system into the sub-system
of interest and a bath (reservior, environment), with the Hamiltonian

Htot = HS +HB +HSB = H0 +HSB (1)

Here, HS is the Hamiltonian of the isolated sub-system (henceforth called simply the system);
HB is the Hamiltonian of bath; and the two parts are combined as H0 ≡ HS + HB. HSB

describes their interaction. The system-bath interaction can always, in principle, be written
as a sum of products of separate system and bath operators, i.e,

HSB =
∑
n

Sn ·Bn (2)

where the Sn and Bn act only on functions of the system and bath variables, respectively.

(2) Second order expanding.

1
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The density matrix of total system is ρtot(t). Its time evolution equation is the Liouville-
von Neumann equation

d

dt
ρtot(t) = −

i

ℏ
[H, ρtot(t)] (3)

All the information of the total system is contained in the equation. But we can not directly
solve it, since the Hamiltonian of total system is infinity.

Go to the interaction picture (symbol ‘∼’). Then Liouvill-von Neumann equation (Eq.3)
becomes

d

dt
ρ̃tot(t) = −

i

ℏ
[H̃SB(t), ρ̃tot(t)] (4)

where
ρ̃tot(t) = U−1(t)ρtot(t)U(t) = e

i
ℏH0tρtot(t)e

− i
ℏH0t (5)

H̃SB(t) = e
i
ℏH0tHSBe

− i
ℏH0t = e

i
ℏ (HS+HB)tHSBe

− i
ℏ (HS+HB)t

=
∑
n

e
i
ℏHStSne

− i
ℏHSte

i
ℏHBtBne

− i
ℏHBt =

∑
n

S̃n(t)B̃n(t) (6)

S̃n(t) = e
i
ℏHStSne

− i
ℏHSt (7)

B̃n(t) = e
i
ℏHBtBne

− i
ℏHBt (8)

Integrate both side of Eq.4 with arbitray start time t0.∫ t

t0

dρ̃tot(τ) = −
i

ℏ

∫ t

t0

dτ [H̃SB(τ), ρ̃tot(τ)] (9)

ρ̃tot(t) = ρ̃tot(t0)−
i

ℏ

∫ t

t0

dτ [H̃SB(τ), ρ̃tot(τ)] (10)

Insert the Eq.10 back to the right side of Eq.4. Then we get
d

dt
ρ̃tot(t) = −

i

ℏ

[
H̃SB(t), ρ̃tot(t0)−

i

ℏ

∫ t

t0

dτ [H̃SB(τ), ρ̃tot(τ)]

]
(11)

d

dt
ρ̃tot(t) = −

i

ℏ
[H̃SB(t), ρ̃tot(t0)]−

1

ℏ2

∫ t

t0

dτ
[
H̃SB(t), [H̃SB(τ), ρ̃tot(τ)]

]
(12)

Currently, we have not do any approximation. The equation is exact.

(3) Trace the bath.

Trace over the bath, we will get the reduced system density matrix ρ̃S(t),
TrB[ρ̃tot(t)] = TrB

[
e

i
ℏH0tρtot(t)e

− i
ℏH0t

]
= e

i
ℏHStTrB

[
e

i
ℏHBtρtot(t)e

− i
ℏHBt

]
e−

i
ℏHSt

= e
i
ℏHStTrB

[
e−

i
ℏHBte

i
ℏHBtρtot(t)

]
e−

i
ℏHSt

= e
i
ℏHStTrB [ρtot(t)] e

− i
ℏHSt

= e
i
ℏHStρS(t)e

− i
ℏHSt

= ρ̃S(t) (13)

Then we get
d

dt
ρ̃S(t) = −

i

ℏ
TrB

{[
H̃SB(t), ρ̃tot(t0)

]}
− 1

ℏ2

∫ t

0

dτTrB
{[

H̃SB(t),
[
H̃SB(τ), ρ̃tot(τ)

]]}
(14)
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(4.1) Initial state assumption.(Ref.[3])

Assume that at time t0 = 0 the pigment system and bath are in a separable state
ρtot(0) = ρS(0)⊗ ρB(0) (15)

this can always be obtained by choosing t0 = 0 appropriately. Then the second term in the
RHS of Eq.12 becomes

TrB
{[

H̃SB(t), ρ̃tot(0)
]}

=
∑
n

[
S̃n(t), ρ̃S(0)

]
TrB

[
B̃n(t)ρB(0)

]
(16)

that is, we consider the expectation value of the operators Bn. In general we will also
need to take an ensemble average over the random fluctuating field ⟨Bn(t)⟩, as we look
at expectation values for the density operator. We can now make the assumption that
⟨Bn⟩B = 0, , which implies TrB

[
H̃SB(t)ρB(0)

]
= 0. This is not restrictive, since, if HSB is of

the form HSB = S ⊗B with ⟨B⟩ ̸= 0 we can replace HSB with HSB = S ⊗ (B − ⟨B⟩B), and
simultaneously add S⟨B⟩B to HS. With this condition, ⟨HSB⟩B = 0 and since ρB(0) has the
same form in both Schrödinger and interaction pictures, the result holds in the interaction
picture also. The same argument can be made if HSB =

∑
n Sn⊗Bn. Then the second term

in the Eq.12 vanishes and we have
d

dt
ρ̃S(t) = −

1

ℏ2

∫ t

0

dτTrB
{[

H̃SB(t),
[
H̃SB(τ), ρ̃tot(τ)

]]}
(17)

This equation can not be sovled, we need make some approximations.

(4.2) Born approximation.(Ref.[3])

Assume that the coupling between the system and the bath is weak and the bath is always
in a thermal equilibrium.

ρtot(t) = ρS(t)⊗ ρB(0) (18)

ρB(0) =
e−βHB

Z
(19)

whereβ = 1/KBT , [ρB(0), HB] = 0 which is a stationary state. ρB(0) has the same form in
both the interaction picture and Schrödinger picture.

(4.3) Markov approximation.(Ref.[3])

We will also assume that we are working over timescales that are shorter than the gross
timescale over which the system evolves, so that

ρ̃S(τ) = ρ̃S(t) (20)

Then Eq.17 becomes
d

dt
ρ̃S(t) = −

1

ℏ2

∫ t

0

dτTrB
{[

H̃SB(t),
[
H̃SB(τ), ρ̃S(t)⊗ ρ̃B(0)

]]}
(21)

(5) Change the integration variable.

Set τ ′ = t− τ , then τ = t− τ ′. We have∫ t

0

dτ =

∫ 0

t

d(t− τ ′) = −
∫ 0

t

dτ ′ =

∫ t

0

dτ ′ (22)
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Then
d

dt
ρ̃S(t) = −

1

ℏ2

∫ t

0

dτ ′TrB
{[

H̃SB(t),
[
H̃SB(t− τ ′), ρ̃S(t)⊗ ρ̃B(0)

]]}
(23)

Rewrite τ ′ to τ , we have
d

dt
ρ̃S(t) = −

1

ℏ2

∫ t

0

dτTrB
{[

H̃SB(t),
[
H̃SB(t− τ), ρ̃S(t)⊗ ρ̃B(0)

]]}
(24)

（6）Expanding the equation.
d

dt
ρ̃S(t) = −

1

ℏ2

∫ t

0

dτTrB
{[

H̃SB(t), [H̃SB(t− τ)ρ̃S(t)⊗ ρ̃B(0)− ρ̃S(t)⊗ ρ̃B(0)H̃SB(t− τ)]
]}

= − 1

ℏ2

∫ t

0

dτTrB
{
H̃SB(t)H̃SB(t− τ)ρ̃S(t)⊗ ρ̃B(0)

− H̃SB(t− τ)ρ̃S(t)⊗ ρ̃B(0)H̃SB(t)

− H̃SB(t)ρ̃S(t)⊗ ρ̃B(0)H̃SB(t− τ)

+ρ̃S(t)⊗ ρ̃B(0)H̃SB(t− τ)H̃SB(t)
}

(25)

where
TrB

[
H̃SB(t)H̃SB(t− τ)ρ̃S(t)⊗ ρ̃B(0)

]
=
∑
m,n

TrB
[
S̃m(t)B̃m(t)S̃n(t− τ)B̃n(t− τ)ρ̃S(t)ρ̃B(0)

]
=
∑
m,n

TrB
[
B̃m(t)B̃n(t− τ)ρ̃B(0)

]
S̃m(t)S̃n(t− τ)ρ̃S(t)

=
∑
m,n

⟨
B̃m(t)B̃n(t− τ)

⟩
B
S̃m(t)S̃n(t− τ)ρ̃S(t) (26)

TrB
[
H̃SB(t− τ)ρ̃S(t)⊗ ρ̃B(0)H̃SB(t)

]
=
∑
m,n

TrB
[
S̃n(t− τ)B̃n(t− τ)ρ̃S(t)ρ̃B(0)S̃m(t)B̃m(t)

]
=
∑
m,n

TrB
[
B̃n(t− τ)ρ̃B(0)B̃m(t)

]
S̃n(t− τ)ρ̃S(t)S̃m(t)

=
∑
m,n

TrB
[
B̃m(t)B̃n(t− τ)ρ̃B(0)

]
S̃n(t− τ)ρ̃S(t)S̃m(t)

=
∑
m,n

⟨
B̃m(t)B̃n(t− τ)

⟩
B
S̃n(t− τ)ρ̃S(t)S̃m(t) (27)

here ⟨
B̃m(t)B̃n(t− τ)

⟩
= trB

[
B̃m(t)B̃n(t− τ)ρB(0)

]
(28)

is the bath correlation function. Rewrite it as⟨
B̃m(t)B̃n(t− τ)

⟩
= trB

[
B̃m(t)B̃n(t− τ)ρB(0)

]
= trB

[
e

i
ℏHBtBm(0)e

− i
ℏHBte

i
ℏHB(t−τ)Bn(0)e

− i
ℏHB(t−τ) · ρB(0)

]
= trB

[
e−

i
ℏHB(t−τ)e

i
ℏHBtBm(0)e

− i
ℏHBte

i
ℏHB(t−τ)Bn(0) · ρB(0)

]
= trB

[
e

i
ℏHBτBm(0)e

− i
ℏHBτBn(0) · ρB(0)

]
=

⟨
B̃m(τ)B̃n(0)

⟩
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= trB
[
Bm(0)e

− i
ℏHBte

i
ℏHB(t−τ)Bn(0)e

− i
ℏHB(t−τ)e

i
ℏHBt · ρB(0)

]
=

⟨
B̃m(0)B̃n(−τ)

⟩
(29)

After the correlation time τc, the correlation function becomes 0. So we can therefore extend
the limit of integration to +∞. Then

d

dt
ρ̃S(t) = −

1

ℏ2

∫∞

0

dτ
∑
m,n

{⟨
B̃m(τ)B̃n(0)

⟩
B
S̃m(t)S̃n(t− τ)ρ̃S(t)

−
⟨
B̃m(τ)B̃n(0)

⟩
B
S̃n(t− τ)ρ̃S(t)S̃m(t)

−
⟨
B̃n(0)B̃m(τ)

⟩
B
S̃m(t)ρ̃S(t)S̃n(t− τ)

+
⟨
B̃n(0)B̃m(τ)

⟩
B
ρ̃S(t)S̃n(t− τ)S̃m(t)

}
(30)

(7) Back to Schrödinger picture.
ρ̃S(t) = e

i
ℏHStρS(t)e

− i
ℏHSt =⇒ (31)

d

dt
ρ̃S(t) =

i

ℏ
HSe

i
ℏHStρS(t)e

− i
ℏHSt + e

i
ℏHSt

[
d

dt
ρS(t)

]
e−

i
ℏHSt − e

i
ℏHStρS(t)

i

ℏ
HSe

− i
ℏHSt

= e
i
ℏHSt

[
d

dt
ρS(t)

]
e−

i
ℏHSt − i

ℏ
e

i
ℏHSt [ρS(t), HS] e

− i
ℏHSt (32)

Put above equations into Eq.30, we have
d

dt
ρS(t)−

i

ℏ
[ρS(t), HS] = −

1

ℏ2

∫∞

0

dτ
∑
m,n

{⟨
B̃m(τ)B̃n(0)

⟩
B
e−

i
ℏHStS̃m(t)S̃n(t− τ)ρ̃S(t)e

i
ℏHSt

−
⟨
B̃m(τ)B̃n(0)

⟩
B
e−

i
ℏHStS̃n(t− τ)ρ̃S(t)S̃m(t)e

i
ℏHSt

−
⟨
B̃n(0)B̃m(τ)

⟩
B
e−

i
ℏHStS̃m(t)ρ̃S(t)S̃n(t− τ)e

i
ℏHSt

+
⟨
B̃n(0)B̃m(τ)

⟩
B
e−

i
ℏHStρ̃S(t)S̃n(t− τ)S̃m(t)e

i
ℏHSt

}
(33)

Since
e−

i
ℏHStS̃m(t)S̃n(t− τ)ρ̃S(t)e

i
ℏHSt

=e−
i
ℏHSte

i
ℏHStSm(0)e

− i
ℏHSte

i
ℏHS(t−τ)Sn(0)e

− i
ℏHS(t−τ)e

i
ℏHStρS(t)e

− i
ℏHSte

i
ℏHSt

=Sm(0)e
i
ℏHS(−τ)Sn(0)e

− i
ℏHS(−τ)ρS(t)

=S̃m(0)S̃n(−τ)ρS(t) (34)

we get
d

dt
ρS(t)−

i

ℏ
[ρS(t), HS] = −

1

ℏ2

∫∞

0

dτ
∑
m,n

{⟨
B̃m(τ)B̃n(0)

⟩
B
S̃m(0)S̃n(−τ)ρS(t)

−
⟨
B̃m(τ)B̃n(0)

⟩
B
S̃n(−τ)ρS(t)S̃m(0)

−
⟨
B̃n(0)B̃m(τ)

⟩
B
S̃m(0)ρS(t)S̃n(−τ)

+
⟨
B̃n(0)B̃m(τ)

⟩
B
ρS(t)S̃n(−τ)S̃m(0)

}
(35)

(8) Switch to the eigenstate representation of HS.
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There are two possibilities to represent the reduced density operator ρS(t). First, one
can choose a site representation in terms of the {|n⟩} basis, which gives the reduced density
matrix ρsiteS (t)mn ≡ ⟨m|ρS(t)|n⟩. On the other hand, the alternative to the site representation
is provided by an eigenstate representation of the excitons {|ν⟩}. This gives a reduced density
matrix such as ρexcS (t)µν ≡ ⟨µ|ρS(t)|ν⟩. In order to obtain exciton energies {ϵν} and states
{|ν⟩}, the system Hamiltonian is diagonalized by orthogonal matrix U via

U−1HSU = Ω (36)
where the νth diagonal element of Ω is identical to the νth eigenenergy ϵν . An exciton ket
state can be expanded as

|ν⟩ =
∑
n

(U−1)νn|n⟩ =
∑
n

U∗
nν |n⟩ (37)

Hence, the two representations of the reduced density operator are transformed to each other
as follows

U−1ρsiteU = ρexc (38)

Set
ωµν = (ϵµ − ϵν)/ℏ (39)

we have
⟨µ|ρS(t)|ν⟩ = ρexcS (t)µν (40)

− i

ℏ
⟨
µ
∣∣[ρS(t), HS]

∣∣ν⟩ =
i

ℏ
[
⟨µ|HSρS(t)|ν⟩ − ⟨µ|ρS(t)HS|ν⟩

]
=

i

ℏ
[ϵµρ

exc
S (t)µν − ϵνρ

exc
S (t)µν ]

= iωµνρ
exc
S (t)µν (41)

⟨µ|S̃m(0)S̃n(−τ)ρS(t)|ν⟩ =
∑
κ,µ′

⟨µ|Sm|κ⟩⟨κ|e−
i
ℏHSτSne

i
ℏHSτ |µ′⟩⟨µ′|ρS(t)|ν⟩

=
∑
κ,µ′

(Sm)µκ(Sn)κµ′e−iωκµ′τρexcS (t)µ′ν

=
∑
ν′

δν′ν
∑
κ,µ′

(Sm)µκ(Sn)κµ′e−iωκµ′τρexcS (t)µ′ν′ (42)

⟨µ|S̃n(−τ)ρS(t)S̃m(0)|ν⟩ =
∑
µ′,ν′

⟨µ|e−
i
ℏHSτSne

i
ℏHSτ |µ′⟩⟨µ′|ρS(t)|ν ′⟩⟨ν ′|Sm|ν⟩

=
∑
µ′,ν′

(Sn)µµ′(Sm)ν′νe
−iωµµ′τρexcS (t)µ′ν′ (43)

⟨µ|S̃m(0)ρS(t)S̃n(−τ)|ν⟩ =
∑
µ′,ν′

⟨µ|Sm|µ′⟩⟨µ′|ρS(t)|ν ′⟩⟨ν ′|e−
i
ℏHSτSne

i
ℏHSτ |ν⟩

=
∑
µ′,ν′

(Sm)µµ′(Sn)ν′νe
−iων′ντρexcS (t)µ′ν′ (44)

⟨µ|ρS(t)S̃n(−τ)S̃m(0)|ν⟩ =
∑
ν′,κ

⟨µ|ρS(t)|ν ′⟩⟨ν ′|e−
i
ℏHSτSne

i
ℏHSτ |κ⟩⟨κ|Sm|ν⟩

=
∑
ν′,κ

(Sn)ν′κ(Sm)κνe
−iων′κρexcS (t)µν′
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=
∑
µ′

δµ′µ

∑
ν′,κ

(Sn)ν′κ(Sm)κνe
−iων′κρexcS (t)µ′ν′ (45)

For convenience, we will remove the subscript S of ρexcS (t) and put Eq.40∼ Eq.45 in Eq.35.
Then, we have
d

d
ρexcµν (t) + iωµνρ

exc
µν = −

∑
µ′ν′

[
δν′ν

∑
κ

1

ℏ2
∑
m,n

∫∞

0

dτ
⟨
B̃m(τ)B̃n(0)

⟩
B
e−iωκµ′τ (Sm)µκ(Sn)κµ′

− 1

ℏ2
∑
m,n

∫∞

0

dτ
⟨
B̃m(τ)B̃n(0)

⟩
B
e−iωµµ′τ (Sm)ν′ν(Sn)µµ′

− 1

ℏ2
∑
m,n

∫∞

0

dτ
⟨
B̃n(0)B̃m(τ)

⟩
B
e−iων′ντ (Sn)ν′ν(Sm)µµ′

+δµ′µ

∑
κ

1

ℏ2
∑
m,n

∫∞

0

dτ
⟨
B̃n(0)B̃m(τ)

⟩
B
e−iων′κ(Sn)ν′κ(Sm)κν

]
ρexcµ′ν′(t)

(46)

(9) General form of Redfiled equation.

Set
Γ
(+)
ν′νµµ′ =

1

ℏ2
∑
m,n

∫∞

0

dτ
⟨
B̃m(τ)B̃n(0)

⟩
B
e−iωµµ′τ (Sm)ν′ν(Sn)µµ′ (47)

Γ
(−)
ν′νµµ′ =

1

ℏ2
∑
m,n

∫∞

0

dτ
⟨
B̃n(0)B̃m(τ)

⟩
B
e−iων′ντ (Sn)ν′ν(Sm)µµ′ (48)

Rµνµ′ν′ = Γ
(+)
ν′νµµ′ + Γ

(−)
ν′νµµ′ − δν′ν

∑
κ

Γ
(+)
µκκµ′ − δµ′µ

∑
κ

Γ
(−)
ν′κκν (49)

we have
d

d
ρexcµν (t) = −iωµνρ

exc
µν (t) +

∑
µ′ν′

Rµνµ′ν′ρ
exc
µ′ν′(t) (50)

This is the mose general form of Readfield equation.

(10) More compact form.

Considering

Γ
(−)∗
ν′νµµ′ =

1

ℏ2
∑
m,n

∫∞

0

dτ
⟨
B̃n(0)B̃m(τ)

⟩∗

B
eiων′ντ (Sn)

∗
ν′ν(Sm)

∗
µµ′

=
1

ℏ2
∑
m,n

∫∞

0

dτ
⟨
B̃m(τ)B̃n(0)

⟩
B
e−iωνν′τ (Sm)µ′µ(Sn)νν′

= Γ
(+)
µ′µνν′ (51)

where ⟨
B̃n(0)B̃m(τ)

⟩∗

B
=

⟨
B̃m(τ)B̃n(0)

⟩
B

(52)

then, we get
Γ
(−)
ν′νµµ′ = Γ

(+)∗
µ′µνν′ (53)
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So the Redfield equation can written as
d

dt
ρexcµν (t) = −iωµνρ

exc
µν (t) +

∑
µ′ν′

Rµνµ′ν′ρ
exc
µ′ν′(t) (54)

where
Rµνµ′ν′ = Γν′νµµ′ + Γ∗

µ′µνν′ − δν′ν
∑
κ

Γµκκµ′ − δµ′µ

∑
κ

Γ∗
νκκν′ (55)

Γµνµ′ν′ =
1

ℏ2
∑
m,n

∫∞

0

dτ
⟨
B̃m(τ)B̃n(0)

⟩
B
eiων′µ′τ (Sm)µν(Sn)µ′ν′ (56)

Should be noticed that the subscripts in Eq.55 and Eq.56 are independent. Don’t get con-
fused.

2 Bath correaltion functions and spectral density

Introducing a spectral distribution function of the electron-phonon coupling constants,
Jmn(ω), one can express the correlation function as(Ref.[1])

Cmn(t) =
⟨
B̃m(τ)B̃n(0)

⟩
B
=

ℏ
π

∫∞

−∞
dωJmn(ω)

[
nBE(ω) + 1

]
e−iωt (57)

where
nBE(ω) ≡

1

eβℏω − 1
(58)

is the Bose-Einstein distribution function1 and we postulated the antisymmetry,
Jmn(−ω) = −Jnm(ω) (62)

The absolute magnitude of the spectral distribution function is related to the reorganization
energy by

λn =

∫∞

0

dω
Jnn(ω)

πω
(63)

Bath correlation function (Eq.57) can be simplified. Considering
1

eβℏω − 1
+ 1 =

1

2

[
coth

(
βℏω
2

)
+ 1

]
e−iωt = cosωt− i sinωt (64)

1 There are many forms, such as

1

1− e−βℏω =
eβℏω − 1 + 1

eβℏω − 1
=

1

eβℏω − 1
+ 1 (59)

coth
(
βℏω
2

)
= 1 +

2

eβℏω − 1
= 1− 2

1− eβℏω
= 1 +

2e−βℏω

1− e−βℏω (60)

Laurent expansion expression

1

1− e−βℏω =
1

2
+

1

βℏω
+

2

βℏ

∞∑
k=1

ω

ω2 + ν2k
(61)

here νk = 2πk
βℏ is Matsubara frequency.
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The real part of the bath correlation function becomes

ReCmn(t)

=
ℏ
2π

∫∞

−∞
dωJmn(ω)

[
coth

(
βℏω
2

)
+ 1

]
cosωt

=
ℏ
2π

∫∞

0

dωJmn(ω)

[
coth

(
βℏω
2

)
+ 1

]
cosωt+ ℏ

2π

∫ 0

−∞
dωJmn(ω)

[
coth

(
βℏω
2

)
+ 1

]
cosωt

=
ℏ
2π

∫∞

0

dωJmn(ω)

[
coth

(
βℏω
2

)
+ 1

]
cosωt− ℏ

2π

∫−∞

0

dωJmn(ω)

[
coth

(
βℏω
2

)
+ 1

]
cosωt

=
ℏ
2π

∫∞

0

dωJmn(ω)

[
coth

(
βℏω
2

)
+ 1

]
cosωt− ℏ

2π

∫∞

0

dωJmn(ω)

[
− coth

(
βℏω
2

)
+ 1

]
cosωt

=
ℏ
π

∫∞

0

dωJmn(ω) coth
(
βℏω
2

)
cosωt (65)

The image part of the bath correlation function becomes

ImCmn(t)

=− ℏ
2π

∫∞

−∞
dωJmn(ω)

[
coth

(
βℏω
2

)
+ 1

]
sinωt

=− ℏ
2π

∫∞

0

dωJmn(ω)

[
coth

(
βℏω
2

)
+ 1

]
sinωt− ℏ

2π

∫ 0

−∞
dωJmn(ω)

[
coth

(
βℏω
2

)
+ 1

]
sinωt

=− ℏ
2π

∫∞

0

dωJmn(ω)

[
coth

(
βℏω
2

)
+ 1

]
sinωt+

ℏ
2π

∫−∞

0

dωJmn(ω)

[
coth

(
βℏω
2

)
+ 1

]
sinωt

=− ℏ
2π

∫∞

0

dωJmn(ω)

[
coth

(
βℏω
2

)
+ 1

]
sinωt− ℏ

2π

∫∞

0

dωJmn(ω)

[
− coth

(
βℏω
2

)
+ 1

]
sinωt

=− ℏ
π

∫∞

0

dωJmn(ω) sinωt (66)

Then, we get

Cmn(t) =
⟨
B̃m(τ)B̃n(0)

⟩
B
=

ℏ
π

∫∞

0

dωJmn(ω)

[
coth

(
βℏω
2

)
cosωt− i sinωt

]
(67)

The Fourier transform of the bath correlation function is

Cmn[ω] ≡
∫∞

0

dteiωtCmn(t) (68)

whose real and imaginary parts are expressed as

ReCmn[ω] = ℏJmn(ω)[nBE(ω) + 1] (69)

ImCmn[ω] =
1

π
P

∫−∞

∞
dω′ReCmn[ω

′]

ω − ω′ (70)

respectively. The symbol “P” denotes the principal value of the integral.2

Then the Eq.56 can be expressed as

Γabcd =
1

ℏ2
∑
m,n

Cmn[ωdc](Sm)ab(Sn)cd (71)

2refer to the Kramers-Kronig relations (k − k relations)
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3 The photosythetic light-harvesting system

We employ the following Frenkel exciton Hamiltonian to study excitation energy transfer
(EET) dynamics of photosythetic light-harvesting system,

Htot = Hel +Hph +Hreorg +Hel−ph (72)
where

Hel =
N∑

n=1

|n⟩⟨n|ϵ0n +
∑
m<n

Jmn(|m⟩⟨n|+ |n⟩⟨m|) (73)

Hph =
N∑

n=1

Hph
n , Hph

n ≡
∑
ξ

ℏωξ(p
2
ξ + q2ξ )/2 (74)

Hreorg =
N∑

n=1

|n⟩⟨n|λn, λn ≡
∑
ξ

ℏωξd
2
nξ/2 (75)

Hel−ph =
N∑

n=1

Hel−ph
n =

N∑
n=1

SnBn, Sn = |n⟩⟨n|, Bn = −
∑
ξ

ℏωξdnξqξ (76)

In the above

• |n⟩ represents the state where only the nth site is in its excited electronic state |φne⟩
and all others are in their ground electronic states |φmg⟩ that is

|n⟩ ≡ |φne⟩
∏
n̸=m

|φmg⟩ (77)

• ϵ0n is the excited electronic energy of the nth site in the absence of phonons.

• Jmn is the electronic coupling Hamiltonian between the nth and mth sites, which is
responsible for EET between the individual sites.

• Hph
n is the phonon Hamiltonian associated with the nth sites, where qξ, pξ, and ωξ are

the dimensionless coordinate, conjugate momentum, and frequency of the ξth phonon
mode, respectively.

• λn is the reorganization energy of the nth site, where dnξ is the dimensionless displace-
ment of the equilibrium configuration of the ξth phonon mode between the ground and
excited electronic is the coupling states of the nth site.

• Hel−ph
n is the coupling Hamiltonian between the nth site and phonon modes.

For simplicity, we assume that the phonon modes associated with one site are uncorrelated
with those of another site.

Cmn ≡ δmnCn(t), Jmn ≡ δmnJn(ω) (78)
Moreover, we assume that the phonon spectral distribution functions for each pigment are
equivalent. Then, we have

Cmn ≡ δmnC(t), Jmn ≡ δmnJ(ω) (79)
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and we employ the Drude–Lorentz density (the overdamped Brownian oscillator model)
J(ω) = 2λ

ωγ

ω2 + γ2
(80)

Considering Eq.76 and Eq.37
Sn = |n⟩⟨n|

|ν⟩ =
∑
n

(U−1)νn|n⟩ =
∑
n

U∗
nν |n⟩

we have
(Sn)ab = ⟨a|n⟩⟨n|b⟩ = ⟨n|a⟩∗⟨n|b⟩ = UnaU

∗
nb (81)

(Sn)cd = UncU
∗
nd (82)

Then the more specific Redfield equation will be
d

dt
ρexcij (t) = −iωijρ

exc
ij (t) +

∑
kl

Rijklρ
exc
kl (t) (83)

Rijkl = Γljik + Γ∗
kijl − δjl

∑
m

Γimmk − δik
∑
m

Γ∗
jmml (84)

Γabcd =
1

ℏ2
C[ωdc]

N∑
n

UnaU
∗
nbUncU

∗
nd (85)

where
C[ω] =

∫∞

0

dteiωtC(t)

C(t) =
ℏ
π

∫∞

0

dωJ(ω)

[
coth

(
βℏω
2

)
cosωt− i sinωt

]
the real and imaginary parts of C[ω] are expressed as

ReC[ω] = ℏJ(ω)[nBE(ω) + 1]

ImC[ω] =
1

π
P

∫−∞

∞
dω′ReC[ω′]

ω − ω′

respectively. From the Eq.83, we can know that

• Coherences (superpositions between states) ρij(t) oscillating at ωij and dephasing with
a rate Rijij.

• Excitonic populations ρii which do not oscillate but are subject to population transfer
with rates Riijj(i← j).

• The other terms include transfer between coherences and populations, Riikl, and can
often be neglected if the chosen basis indeed is the preferred one (so-called secular
approximation).

Sepecially, for the exciton population transfer reate Riijj(i ̸= j, i← j), we have
Riijj = Γjiij + Γ∗

jiij = 2ReΓjiij (86)
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If the system Hamiltonian is fixed

Γjiij =
1

ℏ2
C[ωji]

N∑
n

UnjUniUniU
∗
nj (87)

then the underline term is also fiexd. So
Riijj ∝ ReC[ωji] = ℏJ(ωji)[nBE(ωji) + 1] (88)

which means the positive part of ω axis of ReC[ωji] is in proportion to the downhill rate,
negative part is in proportion to the uphill rate. The ratio of downhill and uphill rate
constants between the populations of sates |i⟩ and |j⟩ is always (Ref.[2])

Ratiodownhill
uphill =

Riijj

Rjjii

=
ℏJ(ωji)[nBE(ωji) + 1]

ℏJ(−ωji)[nBE(−ωji) + 1]
= −

1

eβℏωji−1
+ 1

1

e−βℏωji−1
+ 1

= −
1

eβℏωji−1
+ 1

eβℏωji

1−eβℏωji
+ 1

= −
1

eβℏωji−1
+ 1

eβℏωji+1−eβℏωji

1−eβℏωji

= −
1

eβℏωji−1
+ 1

1

1−eβℏωji

=

(
1

eβℏωji − 1
+ 1

)
· (eβℏωji − 1)

= eβℏωji = e
ℏωji
KBT (89)

Ratio uphill
downhill = e−βℏωji = e

−
ℏωji
KBT (90)
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